INTERNATIONAL STANDARD

First edition 1994-10-01

Information technology — Telecommunications and information exchange between systems — Protocol for exchange of inter-domain routeing information among intermediate systems to support forwarding of ISO 8473 PDUs

Technologies de l'information — Télécommunications et échange d'information entre systèmes — Protocole pour échange d'information inter-domaine de routage parmi les systèmes intermédiaires supportant la transmission de PDUs de l'ISO 8473

Reference number ISO/IEC 10747:1994(E)

ISO/IEC 10747: 1994 (E)

Contents

1 S	Соре	1
2 N	lormative references	1
3 C	Definitions	2
3.1	Reference model definitions	2
3.2	Network layer architecture definitions	3
3.3	Network layer addressing definitions	З
3.4	Routeing framework definitions	3
3.5	Intra-domain routeing definitions	3
3.6	Additional definitions	3
4 S	symbols and abbreviations	4
	Data unit abbreviations	4
4.2	Addressing abbreviations	4
	Other abbreviations	5
5 6	General protocol information	5
5.1	Inter-RD topology	5
5.2	Routeing policy	6
5.3	Types of systems	7
5.4	Types of routeing domains	7
5.5	Routeing domain confederations	7
5.6	Routes: advertisement and storage	7
5.7	Distinguishing path attributes and RIB-Atts	8
5.8	Selecting the information bases	8
5.9	5	8
5	5.9.1 Internal neighbor BIS	8
5	5.9.2 External neighbor BIS	9

© ISO/IEC

5.10 Routeing domain identifiers	9
5.11 Formats of RDIs, NETs, and NSAP addresses	10
5.12 Design objectives	10
	10
5.12.1 Within the scope of the protocol	
5.12.2 Outside the scope of the protocol	10
6 Structure of BISPDUs	11
6.1 Header of BISPDU	11
6.2 OPEN PDU	12
6.3 UPDATE PDU	14
6.3.1 Path attribute encoding	14
6.3.2 Network layer reachability information .	19
6.4 IDRP ERROR PDU	20
6.5 KEEPALIVE PDU	21
6.6 CEASE PDU	21
6.7 RIB REFRESH PDU	21
7 Elements of procedure	
7.1 Naming and addressing conventions	
7.1.1 Interpretation of address information	22
7.1.2 NSAP address prefixes	22
7.2 Deployment guidelines	22
7.2.1 Minimum configuration of an RD	22
7.2.2 Deployment of ISs and ESs	22
7.3 Domain configuration information	23
7.4 Advertising NLRI	23
7.5 Receive process	
7.6 BIS-BIS connection management	
7.6.1 BIS finite state machines	

© ISO/IEC 1994

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland

© ISO/IEC

7.6.2 Closing a connection	29
7.7 Validation of BISPDUs	29
7.7.1 Authentication type 1	29
7.7.2 Authentication type 2	29
7.7.3 Authentication type 3	29
7.7.4 Sequence numbers	31
7.7.5 Flow control	31
7.8 Version negotiation	33
7.9 Checksum algorithm	33
7.10 Routeing information bases	33
7.10.1 Identifying an information base	33
7.10.2 Validation of RIBs	34
7.10.3 Use of the RIB REFRESH PDU	35
7.11 Path attributes	35
7.11.1 Categories of path attributes	35
7.11.2 Handling of distinguishing attributes	37
7.11.3 Equivalent distinguishing attributes	37
7.12 Path attribute usage	37
7.12.1 ROUTE_SEPARATOR	37
7.12.2 EXT_INFO	38
	38
7.12.3 RD_PATH	38 40
-	40
7.12.5 DIST_LIST_INCL	
7.12.6 DIST_LIST_EXCL	42
7.12.7 MULTI-EXIT_DISC	43
7.12.8 TRANSIT DELAY	43
7.12.9 RESIDUAL ERROR	43
7.12.10 EXPENSE	44
7.12.11 LOCALLY DEFINED QOS	44
7.12.12 HIERARCHICAL RECORDING	44
7.12.13 RD_HOP_COUNT	45
7.12.14 SECURITY	45
7.12.15 CAPACITY	45
7.12.16 PRIORITY	46
7.13 Routeing domain confederations	46
7.13.1 RDC policies	46
7.13.2 RDC configuration information	46
7.13.3 Detecting confederation boundaries	46
7.14 Update-Receive process	46
7.15 Information consistency	47
7.15.1 Detecting inconsistencies	47
7.16 Decision process	47
7.16.1 Phase 1: calculation of degree of	
preference	48
7.16.2 Phase 2: route selection	48
7.16.3 Phase 3: route dissemination	49
7.16.4 Interaction with update process	50
7.17 Update-Send process	51
7.17.1 Internal updates	51
7.17.2 External updates	52
7.17.3 Controlling routeing traffic overhead	52
7.18 Efficient organization of routeing information	53
7.18.1 Information reduction	53
7.18.2 Aggregating routeing information	53
7.19 Maintenance of the forwarding information	
bases	56
7.20 Error handling for BISPDUs	56
7.20.1 BISPDU header error handling	56
7.20.2 OPEN PDU error handling	57
7.20.3 UPDATE PDU error handling	57
-	

ISO/IEC 10747: 1994 (E)

7.20.4 IDRP ERROR PDU error handling	
7 20 5 Updatimes evaluate error has dis	59
	59
	59
	59
7.20.8 RIB REFRESH PDU error handling	59
8 Forwarding process for CLNS	59
8.1 Forwarding to internal destinations	60
8.2 Determining the NPDU-derived distinguishing	
attributes	60
8.3 Matching RIB-Att to NPDU-derived	•••
distinguishing attributes	60
	61
9 Interface to ISO 8473	~~
9.1 Use of network layer security protocol over	62
	60
130 8473	62
10 Constants	63
	00
11 System management and GDMO definitions	63
11.1 Name binding	63
11.2 Managed objects for IDRP	63
11.3 Packages for IDRP	63
11.4 Attribute definitions	67
11.5 Parameter definitions	71
11.6 Behaviour	72
11.7 ASN.1 modules	72
12 Conformance	74
12.1 Static conformance for all BISs	75
12.2 Conformance to optional functions	75
12.2.1 Generation of information in reduced	
form	75
12.2.2 Generation of well-known discretionary	
attributes	75
12.2.3 Propagation of well-known discretionary attributes	75
12.2.4 Peer entity authentication	75
	/0
Annex A PICS proforma	77
Annex A PICS proforma	77
A.2 Abbreviations and special symbols	77
A.2.1 Status symbols	77
A.3 Instructions for completing the PICS proforma	77
A.3.1 General structure of the PICS proforma	77
A.3.2 Additional information	78
A.3.3 Exception information	78
A.3.4 Conditional status	78
A.4 Identification	79
A.4.1 PICS proforma: IDRP implementation	
identification	79
A.4.2 PICS proforma: IDRP protocol summary	80
A.4.3 PICS proforma: IDRP general	80

ISO/IEC 10747: 1994 (E)

A.4.5 PICS proforma: IDRP update receive	
process	81
A.4.6 PICS proforma: IDRP decision process	81
A.4.7 PICS proforma: IDRP receive process	81
A.4.8 PICS proforma: IDRP CLNS forwarding	82
A.4.9 PICS proforma: IDRP authentication	82
A.4.10 PICS proforma: IDRP optional transitive	
attributes	82
A.4.11 PICS proforma: Generating IDRP	
well-known discretionary attributes	83
A.4.12 PICS proforma: Propagating IDRP	
well-known discretionary attributes	84
A.4.13 PICS proforma: Receiving IDRP	
• –	85
,,	
Annex B IDRP checksum generation algorithm	86
B.1 Mathematical notation	86
B.2 Algorithm description	86
Annex C Bibliography	88
517	
Annex D Example of authentication type 2	89
D.1 Authentication mechanism	89
Annex E Jitter algorithm	91
······ = •···· -·· -·· -·· -·· -·· -·· -·· -·· -	
Annex F Computing a checksum for an Adj-RIB	92
Annex G RIB overload	93

Annex H Processor overload	94
Annex J Formation of RDCs	95
J.1 Forming a new lower level confederation	95 95
g = ingiter terer centeration	95
	96
J.4 Deleting a higher level confederation	96
Annex K Example usage of MULTI-EXIT_DISC	
attribute	97
Annex L Syntax and semantics for policy	99
L.1 Overview	99
L.1.1 Preference statement	99
L.1.2 Aggregation statement	100
L.1.3 Distribution statement	101
L.2 Policy configuration language BNF	102
L.2.1 PREF statement BNF	102
L.2.2 AGGR statement BNF	102
L.2.3 DIST statement BNF	102
L.2.4 Common BNF symbols	103
L.3 Simple example	104
L.3.1 Transit domain 3	104
L.3.2 Policy configuration example	105
L.3.3 Discussion	106
Index	110

© ISO/IEC

ISO/IEC 10747: 1994 (E)

Figures

1.	Field of Application	2
2.	Intermediate Routeing Domains and End	
	Routeing Domains	4
З.	Position of IDRP within Network Layer	6
4.	Inter-domain Routeing Components	7
5.	Structure of the UPDATE PDU	15
6.	Illustration of Authentication Types 1 and 3	30
7.	Routeing Information Base	34
8.	A Transitive Fully Connected Subnetwork	41
9.	IDRP Naming and Containment Hierarchy	65
D.1	An Example of the Authentication Type 2	90
K.1	Example 1 Configuration	98
K.2	Example 2 Configuration	98
L.1	A Portion of an Internet	105

Tables

1.	The IDRP Information Bases	9
2.	BIS Finite State Machine	26
З.	Path Attribute Characteristics	36
	NPDU-Derived Attribute Set	
5.	IDRP-CL Primitives	63
6.	Architectural Constants of IDRP	64

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 10747 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 6, *Telecommunications and information exchange between systems*.

Annexes A and B form an integral part of this International Standard. Annexes C, D, E, F, G, H, J, K and L are for information only.

© ISO/IEC

Introduction

This Protocol is one of a set of International Standards which facilitate the interconnection of open systems. They cover the services and protocols required to achieve such interconnection.

This Protocol is positioned with respect to other related standards by the layered structure defined in ISO 7498, and by the Network layer organization defined in ISO 8648. It is located at the top of the Network layer and relies on the services of ISO 8473. This protocol permits a routeing domain to exchange information with other routeing domains to facilitate the operation of the routeing and relaying functions of the Network Layer. It applies to the following categories of routeing, which are described in ISO/IEC TR 9575, making no distinction between them:

- Intra-Administrative Domain routeing between routeing domains
- Inter-Administrative Domain routeing between routeing domains.

Within the hierarchical relations between routeing protocols, as described in ISO/IEC TR 9575, this protocol is situated above the intra-domain routeing protocols. That is, this Inter-domain IS-IS protocol:

- maintains information about the interconnections between routeing domains, but does not require detailed information about their internal structures
- calculates path segments on a hop-by-hop basis

This protocol calculates path segments which consist of *Boundary Intermediate systems* and the links that interconnect them. An NPDU destined for an End system in another routeing domain will be routed via Intra-domain routeing to a Boundary Intermediate system (BIS) in the source routeing domain. Then,

ISO/IEC 10747: 1994 (E)

the BIS, using the methods of this inter-domain routeing protocol, will calculate a path to a Boundary Intermediate system in an adjacent routeing domain lying on a path to the destination. After arriving at the next routeing domain, the NPDU may also travel within that domain on its way towards a BIS located in the next domain along its path. This process will continue on a hop-by-hop basis until the NPDU arrives at a BIS in the routeing domain which contains the destination End system. The Boundary IS in this routeing domain will hand the incoming NPDU over to the domain's intra-domain routeing protocol, which will construct a path to the destination End system.

This inter-domain IS-IS routeing protocol places requirements on the type of information that a routeing domain must provide and on the methods by which this information will be distributed to other routeing domains. These requirements are intended to be minimal, addressing only the interactions between Boundary ISs; all other internal operations of each routeing domain are outside the scope of this protocol. That is, this Inter-domain routeing protocol does not mandate that a routeing domain run a particular intra-domain routeing protocol: for example, it would be a local choice as to whether a domain implements a standard intra-domain protocol (such as ISO/IEC 10589) or a private protocol.

The methods of this protocol differ from those generally adopted for an intra-domain routeing protocol because they emphasize the interdependencies between efficient route calculation and the preservation of legal, contractual, and administrative concerns. This protocol calculates routes which will be efficient, loop-free, and in compliance with the domain's local routeing policies. IDRP may be used when routeing domains do not fully trust each other; it imposes no upper limit on the number of routeing domains that can participate in this protocol; and it provides isolation between its operations and the internal operations of each routeing domain.

Information technology - Telecommunications and information exchange between systems - Protocol for exchange of interdomain routeing information among intermediate systems to support forwarding of ISO 8473 PDUs

1 Scope

This International Standard specifies a protocol to be used by Boundary Intermediate systems (defined in 3.6) to acquire and maintain information for the purpose of routeing NPDUs between different routeing domains. Figure 1 illustrates the field of application of this International Standard.

This International Standard specifies:

- the procedures for the exchange of inter-domain reachability and path information between BISs
- the procedures for maintaining inter-domain routeing information bases within a BIS
- the encoding of protocol data units used to distribute inter-domain routeing information between BISs
- the functional requirements for implementations that claim conformance to this International Standard

The procedures are defined in terms of:

- interactions between Boundary Intermediate systems through the exchange of protocol data units
- interactions between this protocol and the underlying Network Service through the exchange of service primitives
- constraints on policy feasibility and enforcement which must be observed by each Boundary Intermediate system in a routeing domain

The boundaries of Administrative Domains are realized as artifacts of the placement of policy constraints and the aggregation of network layer reachability information; they are not manifested explicitly in the protocol. The protocol described in this International Standard operates at the level of individual routeing domains. The establishment of administrative domains is outside the scope of this International Standard.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 7498: 1984, Information processing systems -Open Systems Interconnection - Basic Reference Model.

ISO 7498/Add. 1:1984, Information processing systems -Open Systems Interconnection - Basic Reference Model -Addendum 1: Connectionless-mode transmission.

ISO 7498-3:1989, Information processing systems - Open Systems Interconnection - Basic Reference Model - Part 3: Naming and addressing.

ISO/IEC 7498-4:1989, Information processing systems -Open Systems Interconnection - Basic Reference Model -Part 4: Management framework.

ISO/IEC 8208:1990, Information technology - Data communications - X.25 Packet Layer Protocol for Data Terminal Equipment.

ISO/IEC 8348:1993, Information technology - Network Service Definition.

ISO 8473:1988, Information processing systems - Data communications - Protocol for providing the connectionless-mode network service.

ISO 8648: 1988, Information processing systems -Telecommunications and information exchange between systems - Internal organization of the Network Layer.

ISO 9542:1988, Information processing systems -Telecommunications and information exchange between systems - End system to Intermediate system routeing exchange protocol for use in conjunction with the Protocol for providing the connectionless-mode network service (ISO 8473).

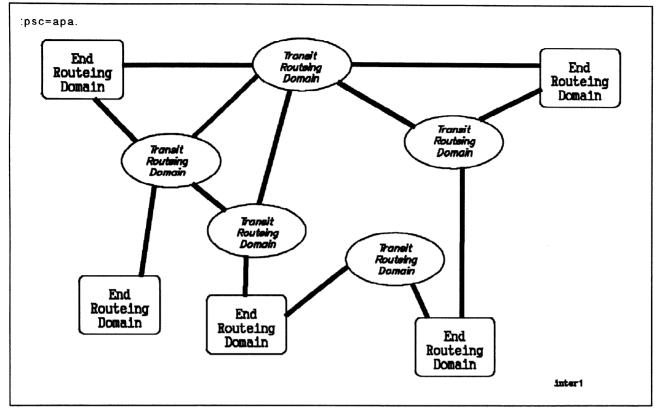


Figure 1 - Field of Application: The Inter-domain Routeing Protocol operates between routeing domains; intradomain routeing is not within its scope.

ISO/IEC TR 9575:1990, Information technology - Telecommunications and information exchange between systems - OSI Routeing Framework.

ISO/IEC TR 9577:1993, Information technology - Telecommunications and information exchange between systems - Protocol identification in the Network Layer.

ISO/IEC 10030:1990, Information technology - Telecommunications and information exchange between systems - End System Routeing Information Exchange Protocol for use in conjunction with ISO 8878.

ISO/IEC 10589:1992, Information technology - Telecommunications and information exchange between systems - Intermediate system to intermediate system intra-domain routeing routine information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode Network Service (ISO 8473).

ISO/IEC 10165-4:1992, Information technology - Open Systems Interconnection - Structure of management information: Guidelines for the definition of managed objects.

ISO/IEC 10165-2:1992, Information technology - Open Systems Interconnection - Structure of management information: Definition of management information.